
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Real-time face retargeting and a face rig on the web

Fig. 1. Screen captures of the web-based real-time facial retargeting with different actors and virtual characters.

Eva Valls Garolera

Interactive Technologies Group

Universitat Pompeu Fabra

Barcelona, Spain

eva.valls@upf.edu

Gerard Llorach

Hörzentrum Oldenburg GmbH

Oldenburg, Germany

g.llorach@hoerzentrum-
oldenburg.de

Javier Agenjo

Interactive Technologies Group

Universitat Pompeu Fabra

Barcelona, Spain

javi.agenjo@upf.edu

Josep Blat

Interactive Technologies Group

Universitat Pompeu Fabra

Barcelona, Spain

josep.blat@upf.edu

Abstract—Virtual characters are a key element in human-

computer interaction, as these enhance the communication

process via facial expressions, gestures and body postures. The

process of creating facial animations is a time-consuming and

laborious task. In this paper we present our recent advances in

our web-based tools to animate faces. Our tools try improve

the control of the facial expression through simple interfaces.

We demonstrate that real-time facial retargeting on the web is

possible and we present a facial rig based on natural neighbor

interpolation between predefined facial expressions.

Keywords—facial retargeting, facial rig, web, real-time, 3D

graphics.

I. INTRODUCTION

The web has become the standard platform to share
information due to its ubiquity and interoperability. And
although the web started as a way to share text information
and multimedia content, currently thanks to the standard
APIs WebGL it is possible to render high-quality 3D content
on the Web, which open new ways of interactivity between
the user and the content [1].

In recent years, virtual characters have been increasingly
appearing in different applications becoming a key
component in human-computer interaction [2,3]. It is well
known that non-verbal behavior such as facial expressions,
the gaze or blinking plays an important role in this type of
communication. So, to do this plausible, the digital models
have to move and express themselves in a natural way. These
behaviors need to be created and generated with animations.
There are many kinds of techniques to animate 3D
characters, but the most known are motion capture and
keyframe animation.

Current real-time motion capture systems map the actor’s
performance to their equivalent 3D model. These systems
can speed up the process of animation, as they can generate
high-precision animations in real-time and these can be
recorded. Facial motion capture systems track low-level
features such as facial landmarks. These captured features of
the actor need to be transferred to the corresponding 3D
model. The lower the captured features are, the more
complex and individual the facial retargeting will be. The
Facial Action Coding System (FACS) [4] offers a good
compromise as the features, the Facial Action Units (AUs),

are independent of the person and describe facial muscle
movements.

Keyframe animation is a more artistic and slow process.
The animator decides where, when and how each part of the
character will move. The most common low-level controls
for facial keyframe animation are blend shapes or skeletal
animation with bones/joints. Blend shapes, also called morph
targets, have one control parameter and usually define a
specific facial action or expression, e.g. smile, eyebrows up,
surprise. With skeletal animation, each bone has 9 control
parameters (translation, rotation, scale) and usually affects a
region of the face, e.g. superior eyelid, right mouth corner.
As the low-level control parameters can escalate quite
quickly, the animation process can be quite time consuming.
High-level controls such as facial rigs usually ease the
creation of animations. They permit the control of several
low-level control parameters through simple and intuitive
interfaces.

Facial rigs are commonly platform dependent and usually
cannot be transferred to other applications. Even more, in
some cases the final animations created with rigs cannot be
exported and used in other platforms. This issue is
particularly important for web applications, as web
technologies to animate virtual characters are quite scarce.
Currently there are applications that are capable of
reproducing facial animations on the web. Talking heads
[5][6], tutoring agents [7] and embodied conversational
agents [8] use blend shapes, skeletal animation and standards
such as the MPEG-4 to generate facial expressions 1 .
Nevertheless, some of these applications rely on external
software to create animations. For simplistic animations
where rigs are not required it is more efficient to use already
established animation software. But for animations with
complex rigs that are platform dependent, these applications
are limited.

One example of a facial rig paradigm is [9], which has
been implemented in the web by [10]. The idea behind this
facial rig is to use the valence-arousal emotional space and to
control the facial expression by moving a point in a 2D
space. Nevertheless, in the aforementioned literature the

1 Stickman Ventures, “Ginger WebGL Morph Demo”. Available at:
https://sv-ginger.appspot.com/. Accessed July 2019.

mailto:eva.valls@upf.edu
mailto:g.llorach@hoerzentrum-oldenburg.de
mailto:g.llorach@hoerzentrum-oldenburg.de
mailto:javi.agenjo@upf.edu
mailto:josep.blat@upf.edu

Fig. 2. System overview of the real-time facial retargeting. Dotted lines

represent the initialization phase. Straight lines represent the real-time path.
The facial landmarks and the head orientation are computed with the

BRFv4 library. The AUs are extracted using the facial landmark differences

and the FAPUs. The AUs are transformed to blend shape weights in order

to modify the facial expression of the virtual character.

facial rig is limited to predefined set of facial expressions.
Due to its interpolation formula, it is not possible to include
additional facial expressions.

In this work we implemented a web-based real-time
markerless facial retargeting system. We used the library
Beyond Reality Face2 (BRFv4) for facial landmark tracking
and the method proposed by Sheng and Kay (2016) [12] for
facial retargeting. The system transfers the facial expressions
of the user’s face to a 3D character rendered in real-time.
Our first contribution is that our system works in the client’s
browser with WebGL and that we only require a webcam
instead of a depth camera as in [12]. We evaluated this facial
retargeting system and listed possible issues and tracking
errors. Our second contribution is the improvement of an
existing facial rig [10] by changing the interpolation formula
between facial expressions. This new facial rig permits
customization and addition of new facial expressions. Our
tools have been implemented in WebGLStudio [11], an open
source platform, and are easily transferable between virtual
characters thanks to the node-based system developed.

II. METHOD

Our system offers two methods for facial control of a
virtual actor: facial retargeting and facial rig with 2D
interpolation. Facial retargeting consists on the reproduction
of the user’s facial expressions on a virtual character in real-
time using a simple webcam. This method allows the user to
control the character with his/her own body as a mirror.
Contrary to it, the facial rig uses preconfigured expressions
of the character which are controlled through an interface,
e.g. a gamepad or a web interface.

In this work we use blend shapes to generate facial
expressions in the virtual actor. The methods presented here
are also compatible with skeletal animation. WebGLStudio
supports skeletal animation and blend shapes using the GPU,
thus permitting real-time generation of complex facial
expressions and animations.

A. Facial Retargeting

In this section we describe the method we used for real-
time facial retargeting system. We used the library BRFv4

2 Beyond Reality Face, “BRFv4”. Available at:

https://github.com/Tastenkunst/brfv4_javascript_examp

les. Accessed July 2019.

and the method proposed by Sheng and Kay (2016) [12].
One important difference from the aforementioned method is
that we used 2D landmarks instead of 3D. An overview of
the facial retargeting system can be seen in Figure 2.

The BRFv4 library tracks the head orientation and
provides 2D facial landmarks at every frame (see Fig 3). A
neutral face is pre-initialized in our application. During
runtime, the current landmarks and the landmarks of the pre-
initialized neutral face are used to calculate landmark
differences associated to each Action Unit (AU), as shown in
the following formula:

𝐷𝑖 = |
𝑆𝑖

𝑐−𝑆𝑖
𝑛

𝑁𝑖
|

where 𝐷𝑖 is the displacement of the i-th AU, 𝑆𝑖
𝑐 is the

state of the i-th AU of the current expression, 𝑆𝑖
𝑛 is the state

of the neutral expression and 𝑁𝑖 is the normalization factor

for the i-th AU. The state of an AU is defined by distances

between landmarks associated to the AU (see Table I). The

normalization factor is computed using distances between

landmarks in the face defined in MPEG-4 as FAPUs (Face

Animation Parameter Units) [13] (see Fig. 3 and Table II).

TABLE I. AU’S STATE AND FAPUS DEFINITIONS

AU State

Mouth Stretch (AU27) (𝑑𝑖𝑠𝑡(61,67) + 𝑑𝑖𝑠𝑡(62,66) + 𝑑𝑖𝑠𝑡(63,65))/ 3

Smile (AU12)

Left = 𝑑𝑖𝑠𝑡(54,33) − 𝑑𝑖𝑠𝑡(42,54)

Right = 𝑑𝑖𝑠𝑡(48,33) − 𝑑𝑖𝑠𝑡(39,48)

Mouth sideways (AU14)

Left = 𝑑𝑖𝑠𝑡(54,45) − 𝑑𝑖𝑠𝑡(54,33)

Right = 𝑑𝑖𝑠𝑡(48,36) − 𝑑𝑖𝑠𝑡(48,33)

Brow Left Up/Down (AU2,

AU4)
(𝑑𝑖𝑠𝑡(22,42) + 𝑑𝑖𝑠𝑡(23,47) + 𝑑𝑖𝑠𝑡(24,46))/ 3

Brow Right Up/Down (AU2,

AU4)
(𝑑𝑖𝑠𝑡(21,39) + 𝑑𝑖𝑠𝑡(20,40) + 𝑑𝑖𝑠𝑡(19,41))/ 3

Eye-Lid Left Open/Closed

(AU5, AU43)
(𝑑𝑖𝑠𝑡(44,46) + 𝑑𝑖𝑠𝑡(43,47))/ 2

Eye-Lid Right Open/Closed

(AU5, AU 43)
(𝑑𝑖𝑠𝑡(38,40) + 𝑑𝑖𝑠𝑡(37,41))/ 2

FAPU Definition

MSN 𝑑𝑖𝑠𝑡(33,62)

MW 𝑑𝑖𝑠𝑡(48,54)

ES 0.5𝑑𝑖𝑠𝑡(36,39) + 0.5𝑑𝑖𝑠𝑡(42,45) + 𝑑𝑖𝑠𝑡(39,42)

ENS 𝑑𝑖𝑠𝑡(27,33)

IRIS_L 𝑑𝑖𝑠𝑡(44,46)

IRIS_R 𝑑𝑖𝑠𝑡(37,41)

Fig. 3. FAPUs (left) and landmarks (right) provided by the BRFv4.

In order to define the displacement range of the AU in
this normalized space, the weight of each one is computed in
the following form:

𝑤𝑖 = {
1, 𝐷𝑖

𝑚𝑎𝑥 ≤ 𝐷𝑖
𝐷𝑖

𝐷𝑖
𝑚𝑎𝑥 , 0 ≤ 𝐷𝑖 < 𝐷𝑖

𝑚𝑎𝑥

where 𝐷𝑖
𝑚𝑎𝑥 is the maximum of the i-th AU

displacement. The maximum displacement is defined
manually (see Table II).

TABLE II. PARAMTERS FOR COMPUTING AUS AND WEIGHTS

AU 𝑵𝒊 (FAPU) 𝑫𝒊
𝒎𝒂𝒙

Mouth Stretch (AU27) MNS 1

Smile Right/Left (AU12) MNS 0.4

Mouth sideways Right/Left (AU14) MW 0.2

Brow Raiser Right/Left (AU2) ENS 0.2

Brow Lowerer Right/Left (AU4) ES 0.1

Eye-Lid Raised Right/Left (AU5) IRIS 0.6

Eye-Lid Closed Right/Left (AU 43) IRIS 0.4

The AUs weights are then smoothed by interpolating
between frames and then mapped to the blend shapes of our
virtual character. The facial expression is defined by a vector
of blend shape weights.

We configure manually the transformation weights from
AUs to blend shapes and the offsets of the head orientation.
Usually each virtual character has a different set of blend
shapes and a different neutral head orientation. Thus, this
latter step would always be required when setting up the
system for a new character. In our virtual character most of
the AUs have an associate blend shape with the same name.
But, for example, in the case of the Brow Raiser (AU2) we
combine the blend shapes Brows Up and Eyes Wide at the
same time in order to get the desired movement.

B. Facial Rig With 2D Interpolation

In this section we briefly explain the 2D valence-arousal
emotional space to control the character’s facial expression
and introduce the different interpolation method for the facial
rig. In the valence-arousal space we predefine several facial
expressions for different positions (see Fig. 4). Some of these

predefined expressions are based on the work from [9] and
[14].

The user can select any point of the 2D space and a facial
expression is generated automatically according to the

surrounding predefined facial expressions. In order to
interpolate between the predefined facial expressions and to
generate a facial expression at any given point of the 2D
space, we implemented natural neighbor interpolation (NNI)
[15] (see Fig. 5). Given a point in a 2D space, this method
finds the nearest neighboring points and assigns a normalized
weight to each neighbor according to their respective
distance.

We implemented two different strategies for NNI. One
uses the method proposed by [16, 17], where Voronoi
diagrams are created by the rasterization of cones using the
GPU. To compute NNI we check the differences of two
Voronoi diagrams stored in textures: one with the
neighboring points and one with the additional interpolation
point (Fig. 5).

The second method uses a bidimensional matrix of
64x64. It stores for every cell of the matrix the influence of
each neighboring point. This matrix is only recalculated
when a new neighbor is added in the space. In our work the
neighboring points are the predefined facial expressions and
the interpolation point is the facial expression to generate.

C. Implementation

We have integrated our solution inside WebGLStudio
[11] and implemented our facial animation pipeline using a
node-based system (Fig. 6). The properties of the scene and
objects can be chosen to appear in the graph interface.
Snippets of code and functions can be written and shown as
nodes with their corresponding inputs and outputs.

We have decided to use this type of approach both
because it is an intuitive and easy to connect and develop
nodes, and it helps less technical and more artistic profiles to
improve our system, and due to the nature of our work we
require those skills to be present in our pipeline.

We used Adobe Fuse CC3 to create the virtual characters.
This tool provides characters with 52 automatically
generated blend shapes. For a review of free tools to create
3D virtual characters for the web please refer to [10]. In our
work the facial retargeting makes use of 13 blend shapes,
most of them associated to an AU. Out of these 13 blend
shapes, 4 are used to control the eyebrows, 4 are used to
control the eyelids and 5 are used to control the mouth. The
facial rig uses 29 blend shapes: 8 of them are used to control
the eyebrows, 6 are used to control the eyelids, 13 are used to

3 Adobe. “Adobe Fuse CC (beta)”. Available at:

https://www.adobe.com/products/fuse.html. Accessed July
2019.

Fig. 5. NNI with a Voronoi diagram. Filled black circle in the center

indicates the facial expression to generate. Unfilled black circles indicate

the predefined facial expressions. Dashed lines show the relationship
between the predefined facial expressions and the desired expression. The

pie chart (top-right) shows the influence percentage of each predefined

facial expression.

Fig. 4. Valence-Arousal representation within preconfigured expressions.

https://docs.google.com/document/d/1mYq9yyotICVLRp7Su3OSU0Hqb-UAeieB10jRutDnU18/edit#bookmark=id.whz37lp2r3dq

control the mouth and 2 are used to control the nose. In our
system we additionally integrated a web-based lip-sync
algorithm [18] which uses 5 blend shapes for the mouth
control.

We exported the character through the Mixamo 4 web
platform in FBX format. Our web application only supports
the COLLADA format, thus we used Blender [19] to convert
from FBX to COLLADA. Although Mixamo supports
directly COLLADA, we found some issues with the skinning
of the character and used FBX instead.

III. EVALUATION

We evaluated the precision of the facial retargeting
system by testing the system with 8 participants. They were
instructed to test the system and try different facial
expressions for approximately one minute. We used
OpenFace 2.1.0 [20, 21] to extract the Facial Action Units of
the videos of each actor and its corresponding animated
virtual character.

We computed the mean-squared error (MSE) of each
AUs (see Fig. 7). The AUs that had more error are related to
the eyebrows (AU4 - Brow Lowerer, AU1 - Inner Brow
Raiser) and the eyelids (AU7 - Lid Tightener). Other AUs
with relevant MSEs were AUs 25 and 26, which represent a
similar action (Lips part and Jaw Drop), and AUs 15 and 17
(Lip Corner Depressor and Chin Raiser). In the case of AUs
25 and 26, they were correlated and most of the error came
from the confusion between them.

IV. RESULTS AND DISCUSSION

An evaluation with experienced and inexperienced
animators should be conducted in order to get a better
assessment of the tools provided in this work. Although we
did not conduct a user experiment with animators, we
observed that the facial retargeting and the facial rig provide
a fast method to create facial animations. In this section we
explain the precision, advantages, disadvantages and possible
improvements of the tools presented.

The evaluation with OpenFace 2.1.0 should be taken with
care, as the system is not trained for tracking AUs in virtual
characters. Additionally, the relationship between AUs and
blend shapes in the virtual character was done manually
without any optimization process. Nevertheless, we expected
to get a coarse idea of the performance of the system with
this evaluation. For example, the eyebrows’ error could be
due to the fact that our virtual character does not have
wrinkles, which appear naturally when frowning.

4 Adobe, “Mixamo”. Available at: https://www.mixamo.com/.
Accessed July 2019.

The facial retargeting errors could also be caused by the
landmark detection of the BRFv4 library. We noticed that
when the mouth or the eyes are closed the markers are not
close enough together and that there are errors on the mouth
corners’ detection. which was confirmed by the evaluation
with OpenFace 2.1.0. When blinking, the eyelids did not
open and close symmetrically, which created a bizarre effect.
Currently we opted for automatically generated blinks in our
applications.

The manual transformation from AUs to blend shapes
could also be improved and automated using OpenFace 2.1.0
or similar software. The AUs weights extracted from the
webcam image and those of the generated image of the
character could be compared and used to reduce and
optimize the error by changing the transformation function.

Our facial retargeting system uses 2D landmarks instead
of 3D landmarks as in [12]. This difference should affect the
performance of our system. Additionally, we do not take into
account head rotation in the landmark distances, thus when
the head is rotated the AU’s weights change with the same
facial expression.

Although the BRFv4 library is the best implementation in
the web we have found, we noticed some noise in the mouth
and eyelids landmarks. Thus, we believe that in the incoming
years the precision of the face detection and tracking libraries
on the web could be improved and it will achieve the
accuracy levels of the offline SDKs. As it is improved, the
errors of our facial retargeting system will be greatly
reduced. A further addition to our system would be gaze
retargeting, which is missing in our application.

Regarding the facial rig, one of its advantages is that it
only requires two values to generate a facial expression. This
facial rig (without NNI) was previously used in [2], where
valence and arousal values were given to generate facial
expressions in an embodied conversational agent. With NNI
the facial rig is not limited to the valence-arousal space.
Because the 2D space of the facial rig is customizable, we
believe that it has potential for animating not just emotions,
but actions. For example, the action of chewing could be
characterized with four extreme facial expressions: jaw open,
jaw clenched, jaw to the left, jaw to the right. In the 2D space
one could find infinite combinations of these four facial
expressions and thus create varied animations by just
dragging a point in a 2D space. An animator’s workspace
could contain several facial rig configurations for different
actions and emotions.

Fig. 6. Screenshot of a section of the facial retargeting graph. The paths and
nodes shown are the webcam’s input, the webcam GUI with facial

landmarks, the extraction of facial features and the head orientation.

Fig. 7. MSE of each AU. Standard error is shown on top of each bar as blue
thin lines. The error means are shown as blue circles. The divisions inside

the columns represent the error percentage of each participant.

Our tools are implemented inside WebGLStudio [11], a
web-based open-source 3D authoring tool. The software not
only provides libraries for rendering with WebGL, but also
an interface to create scenes and develop new web
components. Thanks to this interface, we are able to test
different virtual characters quite easily and to modify and
integrate our tools (see Fig. 1). Moreover, this platform has a
graph component interface. By only changing the links
between the graph nodes, virtual characters with different
facial features can be integrated.

Although it is relatively easy to exchange virtual
characters using the graph interface, the transformation from
AUs to blend shapes, bones and the facial features of the
virtual character is always required. Only when using
software that generates virtual characters with the same
facial parameters, this transformation process has to be done
only once, as the faces should have the same properties.

V. CONCLUSIONS

In this work we presented a facial retargeting system and
a new interpolation function for a facial rig. We
demonstrated that it is possible to implement such
technologies in the web browser with a web-cam and to use
these tools with different virtual characters. Further
evaluations with users and animators should be conducted.

Our application not only supports these technologies, but
it is implemented in an open source platform, giving access
to others to use and modify the tools. We believe that the
methods presented here will open new possibilities for facial
animation on the web and will improve the animation
pipelines, thus permitting higher quality web-based
interactive virtual agents.

ACKNOWLEDGMENTS

This work was partially funded by the EU’s Horizon
2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement 675324 (ENRICH), and
is also related to the projects KRISTINA (645012) and
SAUCE (780470). We would like to show our gratitude to
Sergio Sayago for the interest and the contributions made in
this work.

REFERENCES

[1] A. Evans, M. Romeo, A. Bahrehmand, J. Agenjo, and J. Blat. "3D
graphics on the web: A survey." Computers & Graphics 41 (2014):
43-61.

[2] L. Wanner, E. André, J. Blat, S. Dasiopoulou, M. Farrús, T. Fraga, E.
Kamateri, F. Lingenfelser, G. Llorach, O. Martínez and G. Meditskos.
"Kristina: A knowledge-based virtual conversation agent." In
International conference on practical applications of agents and multi-
agent systems, pp. 284-295. Springer, Cham, 2017.

[3] M. Valstar, T. Baur, A. Cafaro, A. Ghitulescu, B. Potard, J. Wagner,
E. André et al. "Ask Alice: an artificial retrieval of information
agent." In Proceedings of the 18th ACM International Conference on
Multimodal Interaction, pp. 419-420. ACM, 2016.

[4] R. Ekman. What the face reveals: Basic and applied studies of
spontaneous expression using the Facial Action Coding System
(FACS). Oxford University Press, USA, 1997.

[5] GR. Leone and P. Cosi. "LUCIA-webGL: a web based Italian MPEG-
4 talking head." In Auditory-Visual Speech Processing 2011. 2011.

[6] RZ. Buda, G. Boldizsár, A. Tóth, S. Szeghalmy, R. Tornai and R.
Kunkli. "Extended capabilities for a WebGL based talking head
system." In 2014 5th IEEE Conference on Cognitive
Infocommunications (CogInfoCom), pp. 459-459. IEEE, 2014.

[7] H.V. Diez, S. García, J.R. Sánchez, and M. del Puy Carretero. "3D
animated agent for tutoring based on WebGL." In Proceedings of the
18th International Conference on 3D Web Technology, pp. 129-134.
ACM, 2013.

[8] G. Llorach and J. Blat. "Say Hi to Eliza. " In International Conference
on Intelligent Virtual Agents, pp. 255-258. Springer, Cham, 2017.

[9] M. Romeo . Automated processes and intelligent tools in CG media
production. Diss. Universitat Pompeu Fabra, 2016.

[10] G. Llorach, J. Agenjo, J. Blat and S. Sayago. "Web-Based Embodied
Conversational Agents and Older People." In Perspectives on Human-
Computer Interaction Research with Older People, pp. 119-135.
Springer, Cham, 2019.

[11] J. Agenjo, A.Evans and J. Blat. "WebGLStudio: a pipeline for
WebGL scene creation." In Proceedings of the 18th International
Conference on 3D Web Technology, pp. 79-82. ACM, 2013.

[12] Sheng G, “Archived - Intel® RealSenseTM SDK-Based Real-Time
Face Tracking and Animation,” In Intel Developer Zone. Available
at: https://software.intel.com/en-us/articles/intel-

realsense-sdk-based-real-time-face-tracking-and-

animation. Accessed July 2019.

[13] M. Escher, I. Pandzic and N.M. Thalmann. "Facial deformations for
MPEG-4." In Proceedings Computer Animation'98 (Cat. No.
98EX169), pp. 56-62. IEEE, 1998.

[14] D. Matsumoto and P. Ekman, 2008. Facial expression analysis.
Scholarpedia, 3(5), p.4237.

[15] R. Sibson. "A brief description of natural neighbour
interpolation." Interpreting multivariate data (1981).

[16] Hoff III, E. Kenneth, J. Keyser, M. Lin, D. Manocha and T. Culver.
"Fast computation of generalized Voronoi diagrams using graphics
hardware." In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, pp. 277-286. ACM
Press/Addison-Wesley Publishing Co., 1999.

[17] A. Beutel, T. Mølhave and P.K. Agarwal. "Natural neighbor
interpolation based grid DEM construction using a GPU." In
Proceedings of the 18th SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pp. 172-181. ACM,
2010.

[18] G. Llorach, A. Evans, J. Blat, G. Grimm and V. Hohmann. "Web-
based live speech-driven lip-sync." In 2016 8th International
Conference on Games and Virtual Worlds for Serious Applications
(VS-GAMES), pp. 1-4. IEEE, 2016.

[19] T. Roosendaal . "Blender." Blender Foundation. Available at:
https://www.blender.org. Accessed July 2019.

[20] T. Baltrusaitis, A. Zadeh, YC. Lim and L. Morency. "Openface 2.0:
Facial behavior analysis toolkit." In 2018 13th IEEE International
Conference on Automatic Face & Gesture Recognition (FG 2018),
pp. 59-66. IEEE, 2018.

[21] T. Baltrušaitis, M. Mahmoud and P. Robinson. "Cross-dataset learning and

person-specific normalisation for automatic action unit detection." In 2015 11th

IEEE International Conference and Workshops on Automatic Face and Gesture

Recognition (FG), vol. 6, pp. 1-6. IEEE, 2015.

